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Animal experiments allow the study of oxidative DNA 
damage in target organs and the elucidation of dose- 
response relationships of carcinogenic and other 
harmful chemicals and conditions as well as the study 
of interactions of several factors. So far the effects of 
more than 50 different chemical compounds have been 
studied in animal experiments mainly in rats and mice, 
and generally with measurement of 8-oxodG with 
HPLC-EC. A large number of well-known carcinogens 
induce 8-oxodG formation in liver and/or kidneys. 
Moreover several animal studies have shown a close 
relationship between induction of dative DNA damage 
and tumour formation. 

In principle the level of oxidative DNA damage in 
an organ or cell may be studied by measurement of 
modified bases in extracted DNA by immunohisto- 
chemical visualisation, and from assays of strand 
breakage before and after treatment with repair en- 
zymes. However, this level is a balance between the rates 
of damage and repair. Until the repair rates and capacity 
can be adequately assessed the rate of damage can only 
be estimated from the urinary excretion of repair 
products albeit only as an average of the entire body. 

A number of model compounds have been used to 
induce oxidative DNA damage in experimental ani- 
mals. The hepatocarcinogen 2-nitropropane induces 
up to 10-fold increases in 8-oxodG levels in rat liver 
DNA. The level of 8-oxodG is also increased in kidneys 
and bone marrow but not in the testis. By means of 
2-nitropropane we have shown correspondence 

between the increases in 8-oxodG in target organs 
and the urinary excretion of 8-oxodG and between 8- 
oxodG formation and the comet assay in bone marrow 
as well potent preventive effects of extracts of Brussels 
sprouts. Others have shown similar effects of green tea 
extracts and its components. Drawbacks of the use of 
2-nitropropane as a model for oxidative DNA damage 
relate particularly to formation of 8-aminoguanine 
derivatives that may interfere with HPLC-EC assays 
and have unknown consequences. Other model com- 
pounds for induction of oxidative DNA damage, such 
as ferric nitriloacetate, iron dextran, potassium bro- 
mate and paraquat, are less potent and/or more organ 
specific. 

Inflammation and activation of an inflammatory 
response by phorbol esters or E. coli lipopolysaccharide 
(LPS) induce oxidative DNA damage in many target 
cells and enhance benzene-induced DNA damage in 
mouse bone marrow. 

Experimental studies provide powerful tools to 
investigate agents inducing and preventing oxidative 
damage to DNA and its role in carcinogenesis. So far, 
most animal experiments have concerned 8-oxodG and 
determination of additional damaged bases should be 
employed. An ideal animal model for prevention of 
oxidative DNA damage has yet to he developed. 
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carcinogenesis, cancer prevention 
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Abbreviations: 8-oxodG, 8-oxo-7,8-dihydro-2'- 
deoxyguanosine; 2-NP, 2-nitropropane; GC/MS-SIM gas 
chromatography mass spectrometry-selective ion 
monitoring; HPLC-EC high performance liquid 
chromatography-electrochemical detection; EGCG, 
epigallocatechin gaUate; TPA, 12-O-tetradecanoylphorbol- 
13-acetate; LPS, E. coli lipopolysaccharide MeIQx:(2-amino- 
3 [8-dimethylimidazo-4,5-fl quionoxaline; DMBA, 
dimethylbenz[c~]anthrazene; NNK, 4-(methylnitrosamino)-l- 
(3-pyridyl)-I-butanone, N-ethyl-N-hydroxyethylnitrosamine 

INTRODUCTION 

Oxidative damage to DNA has been proposed to 
be an important factor in carcinogenesis sup- 
ported by experimental studies in animals and 
in vitro. I1-3] Animal experiments allow the study 
of oxidative DNA damage in target organs and 
the elucidation of dose-response relationships of 
carcinogenic and other harmful chemicals and 
conditions as well as the study of interactions of 
several factors. So far, the effects of more than 50 
different chemical compounds have been studied 
in animal experiments mainly in rats or mice and 
generally with measurement of 8-oxodG with 
HPLC-EC as recently reviewed, t41 A large num- 
ber of well-known carcinogens induce 8-oxodG 
formation, in particular in liver and/or  kidneys. 
Moreover, several animal studies have shown a 
dose relationship between induction of oxidative 
DNA damage and tumour formation. 

In principle the level of oxidative DNA damage 
in an organ or in cells may be studied by 
measurement of modified bases/deoxynucleo- 
sides in extracted DNA, by immunohistochemical 
visualisation, and from assays of strand breakage 
before and after treatment with repair enzymes. Is] 
However, this level is a balance between the rates 
of damage and repair. Until the repair rates and 
capacity can be adequately assessed the rate of 
damage can only be estimated from the urinary 
excretion of repair products, albeit only as an 
average of the entire body. [6"7] The major part of 
8-oxodG in DNA arises from oxidation of the 
base within the DNA whereas incorporation of 
oxidised nucleotides from the cellular pool is 
probably of minor quantitative importance 

although highly mutagenic and thus of large 
qualitative importance. I81 The repair of 8-oxodG 
in DNA results in 8-oxodG or 8-oxoguanine by 
nucleotide excision and base excision, respec- 
tively. I9] Recentl~ the human 8-oxoguanine glyco- 
sylase (OGG1) was cloned by several groups, II°'nl 
whereas nucleotide excision repair was shown 
to contribute to the repair of 8-oxodG in DNA. I121 
The third major potential source of urinary 
8-oxodG relates to cell and mitochondria turn- 
over. I2] 

So far, very few of the animal studies have 
included oxidative DNA modifications other 
than 8-oxodG. A small number of studies have 
used GC/MS with selective ion monitoring for 
measurement of other oxidised bases in ex- 
tracted and hydrolysed DNA. tI3--171 However, 
the derivatisation procedure required for that 
assay may induce artifactual oxidation of the 
bases and the reported levels are indeed often 
higher than obtained by HPLC-EC. I14"16-191 
Recent data concerning rat liver 8-oxodG 
obtained with HPLC-MS/MS give similar values 
as HPLC-EC. t2°l 

Particular interest relates to prevention of 
oxidative DNA damage. For that purpose models 
involving the induction of oxidative DNA dam- 
age by relevant compounds have been employed 
and a number of  antioxidants, anticarcinogens, 
plant extracts and other compounds have been 
shown to have preventive effects. The present 
review will discuss such animal models for 
induction and prevention of oxidative DNA 
damage. 

2-NITROPROPANE 

The hepatocarcinogen 2-nitropropane is a very 
potent inducer of up to 10-fold increases in 
8-oxodG levels in rat liver DNA. I21-28] Similar 
effects have been obtained with other secondary 
nitroalkanes. I29] After 2-NP administration the 
level of 8-oxodG is also increased about 2-fold in 
the kidneys and 5-fold in the bone marrow but 
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OXIDATIVE DNA DAMAGE 

TABLE I The increase in 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in nuclear DNA from 
target tissues and 24-h urine after treatment with 2-nitropropane (2-NP, 100mg/kg) and the 
estimated contributions to total body burden of guanine oxidation. Data are from Ref. [28] 
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Target Representing part Relative Contribution to total 
of body (%) increase body burden (%) 

Liver 3.5 8-fold 28 
Kidney, bone marrow 3.0 a 4-fold b 12 
and other targets 

Urinary excretion 100 1.4-fold 40 

a Estimated; b Estimated average. 

not  in the t e s t i s .  [ 2 8 ]  Moreover.  the level of 8-oxodG 

in the bone  m a r r o w  correlates closely wi th  the 
comet  as say in the s ame  cells.[3°I Similarly, we  have  

shown  that the t e m p o r a r y  excesses in 8-oxodG 
levels in the target  organs  alter 2-n i t ropropane  

adminis t ra t ion  cor respond  reasonably to the in- 
crease in the u r ina ry  excretion of 8-oxodG 
(Table I). [28] This suppor t s  the v iew that 8-oxodG 

is an impor tan t  repair  p roduc t  of 8-oxodG for- 

mat ion  in the tissues and  that the ur inary  ex- 
cretion can be used  as a b iomarker  in that  respect.  

The poten t  induct ion of 8-oxodG b y  2-NP has  
been used  in a n u m b e r  of studies of p revent ive  

effects of var ious  c o m p o u n d s  (Table II). We have  
recently s h o w n  that p re t rea tment  wi th  an extract 
of Brussels sprouts  can abolish the increases in 

8-oxodG in bone  m a r r o w  and k idney  and  reduce  

the increases in liver and  urine in rats t reated b y  
2-NP 100 m g / k g .  I28] Others  have  shown  similar  

effects of green tea extracts, ellagic acid and  
v i tamin  E, whereas  v i tamin  C and epigallocate- 

chin gallate (ECGC) had  no or min imal  ef- 
fects. [22"s5] Benzyl  selenocyanate  can also reduce  

induct ion of 8-oxodG b y  2-NP a l though the 
su lphur  ana logue  benzyl  thiocyanate had  no 
effect. [25] Surprisingly,  deplet ion of iron increased 

the 8-oxodG induct ion b y  2-NP, whereas  deple-  
tion of m a n g a n e s e  and  copper  decreased the 
effect, [27] suggest ing compl ica ted roles of these 

transit ion metals .  
Due  to several  p roblems,  2-NP is not  an ideal 

mode l  c o m p o u n d  for the s tudy  of oxidat ive D N A  
damage.  The major  p rob lem with 2-NP relates to 
the fo rmat ion  of 8 -aminoguanine  in D N A  and  
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FIGURE 1 Chromatogram (electrochemical tracing) of 
HPLC analysis of 8-aminoguanine (8-NH2-Gua) 8-oxo-7,8,- 
dihydroguanine (8-oxoGua) in nuclear DNA from rat liver 
collected 6 h after administration of 2-nitropropane (2-NP 
100 mg/kg) or vehicle (control). The DNA was hydrolysed 
in formic acid at 130°C for 30min and the chromatographic 
condition were as described elsewhere. Es] A chromatogram 
of a standard solution containing guanine (Gua) 250 pM, 8- 
NH2-Gua 25 nM and 8-oxoGua 25 nM is also shown. 

RNA. [23"56'57] The 8-aminoguanine  der ivat ives  are 

electrochemically active and  behave  similarly to 

the 8-oxoguanine  der ivat ives  in HPLC (Fig. 1). 
Thus,  after formic acid hydrolys is  of extracted 

D N A  both  base  der ivat ives  can be assayed by  
HPLC as described elsewhere.  [5] In untreated rats 

no 8-aminoguanine  der ivat ives  could be  de- 
tected, whereas  6 and  24 h after adminis t ra t ion 
of 2-NP 100 m g / k g  the levels were  9.0 + 5.7 and  
3.6 ± 1.4 per  105 intact guanine  bases, respect ively 
(n = 3 - 5 / g r o u p ;  unpubl i shed  data). This indi- 

cates that  the level of 8 -aminoguanine  is similar 

to the level of 8-oxodG induced by  2-NP and 
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528 S. LOFT et al. 

they have the same repair/disappearance rate. 
Accordingly, 8-aminoguanine derivatives may 
interfere chromatographically with the corre- 
sponding 8-oxoguanine derivatives and the con- 
sequences of the aminated bases are not known, 
although they are likely to depurinate sponta- 
neously. 

Other problems with 2-NP as a model com- 
pound for induction of oxidative DNA damage 
relate to the requirement of metabolic activation, 
probably via sulphation, t561 Moreover, some 
cytochromes P450 appear to detoxify by denitri- 
fication. Depletion of these enzymes by cobalt 
protoporphyrin IX enhanced the effect, whereas 
induction by phenobarbital reduced the oxida- 
tive damage, t251 In rats there were substantial 
strain and sex differences in the effect of 2-NP on 
8-oxodG formation [58"591 and in rabbits there was 
no oxidative DNA damage at all. [6°1 

TRANSITION METALS AND OTHER 
INORGANIC COMPOUNDS 

Transition metals, e.g. iron catalyse the genera- 
tion of hydroxyl radicals from hydrogen peroxide 
and could thus induce oxidative DNA da- 
mage. ~611 However, several of the transition 
metals including copper and manganese as well 
as zinc, are essential for the function of super- 
oxide dismutases and other important enzymes. 
Accordingly, overload with and depletion of 
metals may have complex effects on oxidative 
stress in experimental studies. 

In isolated DNA the damaging effects of iron 
and copper and the prooxidant effects of reduc- 
ing agents, such as vitamin C, are easily demon- 
strated. I62"631 Similarly, in isolated cells iron 
induce a range of oxidative modifications of the 
DNA bases, t641 However, in vivo iron appears to 
be much less potent. In rat testis the level of 
8-oxodG was only 25% increased after adminis- 
tration of 500 mg/kg of iron-dextran, t6sl whereas 
cotreatment with Arochlor 1254 was required for 
600 mg/kg iron-dextran to increase the levels in 

mouse liver. I661 In our hands, 400 mg/kg  of iron- 
dextran was required to raise the 8-oxodG levels 
in sperm cells and kidney tissue as well as its 
urinary excretion less than 2-fold, whereas no 
effects were seen in liver and testis, although iron 
was a very potent inducer of 8-oxodG in testis 
and sperm cells in vitro (unpublished data). On 
the other hand, ferric nitriloacetate effectively 
induced 8-oxodG levels and other DNA base 
modifications in rat kidneys and this has been 
employed for the study of preventive interven- 
tions as shown in Table II. [14"32"33'67-69] Surpris- 
ingly, depletion of iron increased the spontaneous 
levels and enhanced the inducing effect of 2-NP 
on 8-oxodG in rat liver, [27] although with a 
choline deficient diet iron depletion reduced the 
inducing effect on 8-oxodG. Is°l Depletion of 
manganese and copper decreased both the spon- 
taneous and 2-NP increased levels of 8-0xodG in 
rat liver. [271 These data suggest more complex 
roles of these transition metals, consistent with 
their involvement in both generation of oxygen 
radicals and antioxidant defence enzymes. 

Cobalt and nickel have been shown to induce a 
range of oxidative DNA modifications in rats, 
particularly in the kidneys, I13"16j Cadmium chlo- 
ride caused increased levels of 8-0xodG in the 
testis in rats although this could at least partly be 
related to a decrease in repair activity of this 
lesion. I7°1 Nevertheless in vitro strand breaks 
were induced by cadmium in  isolated Leydig 
cells in keeping with rat testis as a target for the 
carcinogenic effect of cadmium, t711 

Depletion of zinc may cause oxidative damage. 
Thus, maternal depletion resulted in increased 
8-oxodG levels in the livers of infant rhesus 
monkeys; I721 whereas in rats depletion increased 
the 8-oxodG levels in the testis. [73] 

Potassium bromate is a renal carcinogen and it 
has consistently induced 8-0xodG in the kidneys 
in rats. [31'74--77] This compound has been used to 
study preventive effects of vitamin C, gluta- 
thione, cysleine (Table II). E311 Dimethyl arsenic 
acid a representative arsenical and liver carcino- 
gen induced 8-0xodG in the liver in rats. I781 
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OXIDATIVE DNA DAMAGE 529 

TABLE II Animals studies of prevention of oxidative DNA damage measured as 8-oxodG or by comet assay 

Treatment Species and target Prevention Reference 

2-Nitropropane Rat liver Vitamin E, eUagic acid, (EGCG) [22] 
Green tea, (EGCG) [22] 
Benzyl selenocyanat; [25] 

± iron depletion Rat liver Mn and Cu depletion [27] 
Rat liver, kidney, bone marrow, urine Brussels sprouts [28] 

KBrO3 Rat kidney Vitamin C, glutathione, cysteine [31] 
Fe-NTA Rat kidney N-acetyl cysteine 2-MES, [32] 

vitamin E [33l 
Etinyl estradiol Rat liver Vitamin C and E, fl-carotene [34] 
Pentacholorphenol Mouse liver Vitamin C and E, EGCG, diaUyl sulfide [35] 
NNK Mouse lung Green tea, EGCG [36] 
Diethylnitrosamine Rat liver Green tea [37] 
Aflatoxin B1 Rat liver Selenium, desferrioxamine [38] 
Dimethylhydrazine Rat colon Green tea [39] 
Benzene + LPS Mouse bone marrow Propylene glycol* [40] 

Dexamethasone [41] 
TPA Mouse skin Sarcophytol [42] 

EGCG, tamoxifen [43] 
Phenethyl ester, caffeic acid [44] 

Diesel particles ± fat Mouse lung fl-carotene [45] 
Choline deficient diet Rat liver Vitamin C and E [46] 

Ethionine, methionine [47] 
Aspirin [48,49] 
Iron depletion [50] 
Green tea [37] 
No effect of DPPD [51] 

Depletion of vitamin C and E Not Guinea 
pig liver 

Spontaneous levels Rat liver 
Rat kidney, urine, not liver or bone marrow 
Rat liver 

No effect of high vitamin C or E [52] 
No effect of vitamin E [53] 
Brussels sprouts [28] 
Food restriction [54] 

* Only comet assay; DPPD: N,N'-diphenyl-p-phenylenediamine. 

REDOX CYCLING AGENTS 

Redox cycling agents m a y  generate great quan-  

tifies of superoxide anions dur ing their metab- 

olism and wou ld  thus be expected to induce 
oxidative D N A  damage.  1611 However,  mena- 

dione, one of the mostly used model  compounds  

in this respect, failed to increase 8-oxodG levels in 

isolated hepatocytes despite the fact that D N A  
fragmentat ion was induced. ~791 Similarly, in an 

in vivo s tudy  in rats modula t ion of cellular redox 

control by  phenobarbital  (for induct ion of cyto- 

chrome P450 reductase), dicumarol  (for inhibi- 

tion of quinone reductase) and phorone  (for 

depletion of glutathione), induced 8-oxodG 

levels in the liver independent ly  of the concomi- 
tant treatment with menadione.  IS°l 

Paraquat  and hydroqu inone  have been 

reported to increase the ur inary  excretion of 
8-oxoguanine. I381 Similarly, paraquat  has been 

reported to increase the level of 8-oxodG about  

5-fold in the lung and brain and to lesser extent in 

the liver in rats. Iml However,  in our  laboratory we 

have seen no increase in the 8-oxodG levels 

in the liver and only minor  and  insignificant 

increases in the lung and brain after administra- 

tion of a similar dose of paraquat  which was 
sufficient to cause a 10% mortali ty in the rats 
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530 S. LOFT et al. 

(unpublished data). The reason for this discre- 
pancy is not clear. 

Estrogens can, via catechol metabolism, 
undergo redox cycling generating reactive oxy- 
gen species. I821 Indeed, peroxidative metabolism 
of diethylstflbestrol in vitro caused oxidation of 
deoxyguanosine to 8-oxodG. I831 Several estrogens 
have been shown to cause oxidative DNA 
damage in vivo. In the rat ethinylestradiol treat- 
ment  increased 8-oxodG levels in the liver, t341 
whereas in hamsters both estradiol and diethyl- 
stilbestrol caused 8-oxodG formation in the liver 
and kidney. [84--861 In both species 8-0xodG forma- 
tion was correlated with tumour  formation and 
the effeCts could  be prevented by a combination 
of vi tamin C and  B and t -carotene in the rat or 
vi tamin C alone in hamsters. [34"s6] In ovariecto- 
raised rats induction of 8-0xodG in liver DNA by 
2,3,7,8-tetrachlorodibenzo-p-dioxin was reduced, 
suggesting that the effect is related to metabolism 
of endogenous  estrogens by inducible cyto- 
chrome P450 enzymes, including CYPIB1. ts7~ 
Nevertheless, estrogens have profound regula- 
tory effects on cells expressing the relevant 
receptors and it is thus tempting to speculate on 
whether  the DNA damaging effects are only 
related to redox cycling chemistry. 

Pentachlorophenol is a liver carcinogen and 
has been shown to cause formation of 8-oxodG in 
mouse  liver, t35"88j Tetrachloro-p-hydroquinone, 
the major metabolite of pentachlorophenol,  is 
known to autoxidise to its semiquinone radical 
and is likely to be responsible for this effect as 
shown in a separate s tudy  in mice. [89] The effects 
of pentachlorophenol could be prevented by oral 
administrat ion of vi tamin E and diallyl sulfide, 
whereas ellagic acid and EGCG offered partial 
protection and t-carotene none at all. [351 

P R O C A R C I N O G E N S  REQUIRING 
METABOLIC ACTIVATION 

A number  of different s tandard procarcinogens 
or mutagens  which are generally associated with 
DNA adduct  formation after metabolic activation 
to reactive metabolites also induce oxidative 
DNA damage,  at least in terms of 8-0xodG in 
various tissues. These compounds  include classi- 
cal carcinogens, such as aflatoxin, DMBA, the 
food mutagen benz[a]pyrene MeIQx and various 
nitrosamines, (Table III). [37'90-96] With the excep- 
tion of one s tudy  showing no effects on hepatic 
8-0xodG of three different nitrosamines, [24] all the 

TABLE III Oxidative DNA damage induced by standard mutagens inflicting DNA adducts after metabolic activation 

Compound Species Target organ(s) Reference 

Aflatoxin B1 Rat Liver [90,97] 
Benz[a]pyrene Rat Liver and kidney [91] 
DMBA Rat Mammary gland [93] 

Mouse Epidermis [98] 
Dirnethylhydrazine Rat Colon and liver, not kidney [99] 
MeIQx Rat Liver [92] 
Nitrosamines 
NNK Mouse Lung > liver, not kidney [94] 

Lung [36] 
Lung and liver [100] 
Lung and foetal liver [101] 

Diethylnitrosamine Rat Liver [37] 
EHEN Rat Kidney, not liver or lung [95] 
N--nitrosodimethylamine Rat Liver [96] 

No effect in liver [24] 
N-nitrosodiethylamine Rat No effect in liver [24] 
N-nitrosomorpholine Rat No effect in liver [24] 
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OXIDATIVE DNA DAMAGE 531 

other studies, including 7 on nitrosamines, show 
induction of 8-oxodG in target tissues of these 
carcinogens (Table III). Some of the studies of the 
effects of DMBA in mouse skin and of MeIQx and 
N-nitrosodimethylamine in rat liver show close 
correlation between the formation of 8-oxodG 
and the development of t u m o u r s .  [92'96'98] In 
mouse epidermis this correlation was even better 
than between DMBA-DNA adducts and the 
tumour process. [gsl The consistent ability of these 
mutagens to induce 8-oxodG suggests that oxi- 
dative DNA damage also play a role in their car- 
cinogenic effects. The mechanisms could involve 
both generation of reactive oxygen species during 
the metabolism of the_mutagens and a conse- 
quence of cellular damage caused by their 
reactive metabolites. Several of the mutagens 
have been used to address preventive effects of 
selenium, desferrioxamine, vitamin E, green tea, 
EGCG and nonsteroidal inflammatory drugs 
(Table II). [37'38'94"100] 

Although benzene does not generate DNA 
adducts it requires metabolic activation by 
CYP2E1 for its toxic effects. Benzene induced 
strand breaks and raised 8-oxodG in the target 
cells in the bone marrow in mice and this effect 
was enhanced by LPS as described below and 
reduced by pretreatment with propylene glycol, 
which inhibits metabolism by CYP2E1 .[40,41,102] 

PEROXISOME PROLIFERATORS 

In rodents, in particular, peroxisome proliferators 
cause generation of substantial amounts of 
hydrogen peroxide. Ira3[ Accordingly fibrates, 
phthalates and similarly acting compounds have 
consistently been shown to increase the levels of 
8-oxodG in nuclear and mitochondrial DNA from 
the liver. [l°4-n°l So far, however, no attempts to 
prevent such effects have been published. 

Some haloacetates are peroxisome proliferators 
and some haloacetates have been shown to 
induce 8-oxodG formation in mouse liver. [ml 
However it could be demonstrated that dichloro- 

acetate which is a peroxisome proliferator did not 
increase the 8-oxodG levels, whereas the bromi- 
nated analogues induced 8-oxodG but not per- 
oxisomal proliferation. 

INFLAMMATION 

In inflammation large quantities of reactive 
oxygen and nitrogen species are produced and 
resulting oxidative DNA damage would be 
expected. [31 Indeed simulation of inflammation 
by TPA or LPS induced a number of oxidative 
DNA base modifications in various cell lines, 
isolated human granulocytes and in co-cultured 
target cells, [n2-nSl although the formation of 8- 
oxodG in granulocytes by TPA has later been 
questioned. [~16I Similarly TPA induced 8-0xodG, 
thymine glycol and 5-hydroxyuridine in the skin, 
in particular in sensitive SENCAR mice, whereas 
the effect was less pronounced in other 
mice. [42'1171 The effect of TPA has been inhibited 
by various agents, including sarcophytol, caffeic 
acid phenethyl esters from propolis, EGCG and 
tamoxifen as shown in Table II. In transgenic mice 
with chronic active hepatitis 8-0xodG accumu- 
lates in the liver, presumably due to the contin- 
uous inflammatory process. In8[ 

The leukaemogenic effect of benzene may 
involve inflammatory processes and resulting 
oxidative DNA damage. I~°2'u9'~2°[ Thus, benzene 
can cause generation of nitric oxide and reactive 
oxygen species in relevant cells. [119A2u221 In vitro 

TPA enhanced benzene induced strand breaks in 
mouse bone marrow cells and human leukocytes 
whereas LPS pretreatment enhanced the ben- 
zene-induced damage in bone marrow ceils 
assessed by the comet assay and 8-0xodG forma- 
tion in mice in vivo. [41"123] Moreover, blocking the 
inflammation by dexamethasone abrogated the 
oxidative DNA damage. [411 Peroxynitrite and 
TPA activated human granulocytes can generate 
nitrated and hydroxylated metabolites of ben- 
zene in vitro and this pathway may also be 
relevant in the toxic mechanism. [~241 
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Installation of diesel exhaust particles in the 
trachea in mice resulted in formation of 8-0xodG 
in the lungs corresponding to the development of 
tumours. [4s'125E Although diesel partides alone 

can generate reactive oxygen species they are also 
potent inducers of inflammation. I126-~281 Simi- 
larly, silica particles induce inflammation and 8- 
oxodG in the lung of rats. [129] The 8-0xodG 
inducing effect of diesel particles was enhanced 
by a high fat diet and reduced by t-carotene. I45a251 

DIETARY INTERVENTIONS 

A number of dietary manipulations can induce 
oxidative DNA damage. A choline deficient and 
amino acid defined diet has consistently induced 
8-0xodG levels in ra t  l iver.  [37"46-50'130-132] More- 

over, this effect may be related to carcino- 
genesis. E1331 The choline deficient model has 
been used to investigate the preventive effects 
of a number of factors, such as iron depletion, 
asprin, vitamin C and E, ethione, methionine and 
green tea as shown in Table II. [46-'5°] 

A diet rich in fat, particularly of unsaturated 
composition, may be expected to induce oxida- 
tive DNA damage, since lipid peroxidation 
products generated 8-oxodG in isolated DNA. 
However, unsaturated fatty adds  had no effect on 
the level of 8-oxodG in cultured human lympho- 
cytes. [134"135] In rats, high fat (24.6%) diets based 

on palm oil, corn oil and menhaden were 
compared and a significant correlation between 
the extent of unsaturation and 8-oxodG levels in 
mammary tissue was shown. I136] Moreover, the 
slope of the linear relationship was steeper in rats 
fed a diet deficient in vitamin E and selenium as 
compared to normal animals. However, in an- 
other rat study no difference in mammary 8- 
oxodG level was seen in rats fed a 20% fat diet 
based on lard or corn oil. E931 Similarly, no 
significant differences in liver 8-oxodG levels 
were seen between rats fed a diet based on fish 
oil or sOybean oil with different levels of vitamin 
E. [1371 At a fixed total energy intake, rats fed diets 

with either 20% or 3% corn oil had significantly 
lower levels of 5-hydroxyuracil in DNA from 
mammary gland epithelium as compared with 
rats fed a control diet with 5% corn oil. I1381 In mice 
a high fat diet enhanced the induction of 8-oxodG 
in lung DNA by intratracheal installation of 
diesel particles, f4Sa2sl In our laboratory, the 
urinary excretion of 8-oxodG was approximately 
3-fold increased in rats fed a diet with 23% fat 
based on either corn oil or coconut oil as 
compared with rats fed normal chow with 3% 
corn oil (unpublished data). A high fat diet allows 
a large intake of energy and metabolic rate, which 
may lead to an increased production of reactive 
oxygen species. I1391 Indeed, energy restriction 
reduces oxidative modification of both tissue 
DNA and proteins in rodents which may explain 
the reduced cancer risk and increased long- 
evity. Is4,14°A411 However, such effects have not 
been reproduced in terms of urinary 8-oxodG 
excretion in humans subjected to approximately 
20% energy restriction. [1421 In Emory mice the 
urinary excretion of 8-oxodG was even increased 
in energy restricted animals, possibly due to a 
higher level of physical activity. I1431 

Nutrional antioxidants may also be subject to 
dietary manipulations and supplementation with 
vitamin C and E as well as t-carotene has been 
used to prevent chemically-induced oxidative 
DNA damage with some success as shown in 
Table II and described above. In guinea pigs it is 
possible to deplete vitamin C. However, even 
with extensive depletion and supplementation, 
creating a 59-fold gradient in vitamin C concen- 
trations in the liver no differences in 8-oxodG 
levels were seen in guinea pigs. I521 Similarly, 
depletion or extensive supplementation of vita- 
min E had no effect on the levels of 8-0xodG in 
the liver from rats or guinea pigs. [s2"s31 

RADIATION 

Ionising radiation generates oxygen radicals and 
cause damage to isolated DNA and particularly 
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to sensitive cells in culture. I144'1451 In vivo, how- 
ever, very large doses in excess of 100Gy are 
required to generate increased levels of 8-0xodG 
or a number of oxidised bases in DNA from 
mouse liver. 115"1461 However, this could be due to 
ongoing repair as the yield per radiation dose has 
been reported to be much higher in terms of 
urinary excretion of 8-0xodG and thymidine 
glycol in mice. t1471 

Near-ultraviolet radiation dose-dependently 
induced 8-0xodG levels in the epidermis of 
hairless mice, an effect that could be due to 
generation of singlet oxygen. I1481 Chronic expo- 
sure to UV B radiation also increased the 8-0xodG 
levels but the presence of inflammation and 
generation of peroxynitrite suggest that as the 
responsible mechanism, t1491 

CONCLUSION 

Experimental studies provide powerful tools to 
investigate agents inducing and preventing oxi- 
dative damage to DNA in target organs and its 
role in carcinogenesis. So far, most animal experi- 
ments have concerned 8-oxodG and the new 
analytical techniques allowing determination of 
other damaged bases should be employed more 
extensively. Similarly, the influence of DNA 
repair capacity has only recently been addressed 
in such animal experiments. I7°1 Moreover, the 
level of oxidatively modified bases/deoxynucleo- 
sides in tissue DNA reflects a balance between the 
rate of damage and repair. Changes in the rate of 
damage may be assessed from the urinary 
excretion of repair products of which only a few 
have been studied so far. 

A large number of chemical compounds, and 
radiation, induce oxidative DNA damage and 
some of these have been used successfully to 
demonstrate effects of various antioxidants and 
other preventive substances. Although extensiv- 
ely used, 2-NP poses several problems, particu- 
larly with respect to generation of other guanine 
products possibly interfering with assays and 

unknown effects. Similarly, the standard muta- 
gens consistently induce 8-oxodG but also DNA 
adducts and they are thus not well suited for 
animal models of oxidative DNA damage. Redox 
cycling agents have not shown consistent effects, 
except for catechol estrogens but their hormonal 
effects complicate their use as model compounds 
in this respect. Potassium bromate, cobalt, nickel 
and ferric nitriloacetate may be used to induce 
DNA damage in the kidney, whereas other iron 
derivatives have very small effects. Inflammation 
and resulting DNA damage and their prevention 
appears to be an interesting field deserving 
experimental studies. Dietary manipulations, 
in particular choline deficiency and possibly a 
high fat content, may be used for study of 
oxidative damage whereas antioxidant depletion 
appears to have no effect. Ionising radiation 
requires very high doses for effects on DNA 
bases in animals, whereas UV can only be used 
on the skin. Accordingly, an ideal animal model 
for prevention of oxidative DNA damage has yet 
to be developed. 
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